Archives de catégorie : Electroacupuncture et autres techniques

Laser de faible puissance et utilisation en acupuncture : principes physiques et mécanismes d’action

Concert au Palais Rameau – Lille – France
Concert au Palais Rameau – Lille – France

Résumé : Une technique associée à l’acupuncture est le laser de faible puissance. Utilisée sur le point d’acupuncture, l’émission laser peut remplacer l’aiguille. La connaissance de ses caractéristiques physiques (longueur d’onde, énergie, puissance, irradiance, fluence) est primordiale pour un effet optimal de la thérapie par acupuncture laser (TAL). Les études expérimentales montrent que les effets photobiologiques résultent d’effets directs avec stimulation de la microcirculation (effets sur l’angiogenèse, stimulation trophique au niveau cellulaire) qui engendrent à leur tour des effets indirects : anti-inflammatoires, antalgiques, trophiques, antiallergiques, effets de détoxification par activation des radicaux libres. La TAL a donc un intérêt notable pour tous ceux ayant peur des aiguilles et doit faire partie du panel de soins de la médecine moderne. Néanmoins des essais contrôlés randomisés sont nécessaires pour mieux définir les paramètres d’un traitement optimal. Mots-clés : laser – acupuncture – faible puissance – irradiance – fluence – absorption tissulaire – TPKR – ROS – TNF-α – interleukine IL-1β – récepteurs 5-HT1 et 5-HT2A – β endorphine. 

Summary: An acupuncture related technique is the low-power laser. Used on the acupuncture point, the laser output can replace the needle. Knowledge of its physical characteristics (wavelength, energy, power, irradiance, fluence) is essential for optimal effect of laser acupuncture therapy (LAT). Experimental studies show that the photobiological effects result from direct effects with stimulation of the microcirculation (effects on angiogenesis, trophic stimulating in cellular level), which in turn generate indirect effects: anti -inflammatory, analgesic, trophic, antiallergic, detoxification effects by activation of free radicals. LAT thus have a significant for all those with a fear of needles and should be part of the panel care modern medicine interest. Nevertheless, randomized controlled trials are needed to better define the parameters of optimal treatment. Keywords: laser – acupuncture – Low power – irradiance – influence – tissue absorption – TPKR – ROS – TNF- α – IL- 1β interleukin – 5-HT1 and 5 -HT2A – β endorphin.

  


La thérapie par laser de faible puissance (TLFP) est une forme de photothérapie qui va engendrer différents processus biologiques dépendant de paramètres physiques spécifiques comme la longueur d’onde, la puissance, l’énergie, la fluence et l’irradiance. En raison de ses propriétés antalgiques et anti-inflammatoires, elle peut être utilisée par exemple dans les cervicalgies [[1]], même si son efficacité est controversée dans une autre méta-analyse plus récente [[2]]. Une intéressante modalité de la TLFP est la thérapie par acupuncture laser (TAL) définie comme l’utilisation du laser par stimulation d’une combinaison de points d’acupuncture soit de façon simultanée [[3]], soit de façon séquentielle [[4]] selon les paradigmes de la médecine chinoise. Les avantages du TAL, outre la rapidité du temps de traitement, sont son intérêt chez les personnes ayant la crainte des aiguilles, et surtout le fait de n’entraîner aucun risque d’infection, ni effets secondaires, à condition que patient et praticien protègent leurs yeux par des lunettes adaptées à la longueur d’onde.

 

Aspects physiques du laser

 Quelques notions de base

 Un laser (acronyme de l’anglais « Light Amplification by Stimulated Emission of Radiation » est un appareil qui produit une lumière spatialement et temporellement cohérente basée sur l’effet laser. Celui-ci a pour principe fondamental l’émission stimulée (ou émission induite) décrite en 1917 par Albert Einstein. En 1960, le physicien américain Maiman obtient pour la première fois une émission laser au moyen d’un cristal de rubis. Un an plus tard, Javan mettait au point un laser au gaz (hélium et néon) puis en 1966, Sorokin construisait le premier laser à liquide. Einstein montre que l’émission d’un photon lorsqu’un atome se désexcite peut être induite, stimulée, par un photon de même énergie. Dans ce processus appelé « émission stimulée », le photon émis possède les mêmes caractéristiques que le photon « stimulant » : même énergie, même direction d’émission, même phase, mais avec une énergie double du fait de l’amplification de lumière par émission stimulée de radiation (figure 1).


 Le phénomène d’absorption. Lorsqu’il est éclairé par un rayonnement électromagnétique (photon hν = la lumière), un atome peut passer d’un état n à un état n’ > n, en prélevant l’énergie correspondante sur le rayonnement. L’atome passe de son état fondamental E1 vers l’état excité E2. 

Le phénomène d’émission stimulée. Un atome dans l’état n’ peut se « désexciter » vers le niveau n sous l’effet d’une onde électromagnétique, qui sera alors amplifiée. On peut l’interpréter comme l’émission d’un photon d’énergie qui vient s’ajouter au rayonnement. La désexcitation de l’atome est stimulée par l’arrivée du photon incident. Le photon émis vient s’ajouter au champ incident : il y a amplification.

Figure 1. Les phénomènes d’absorption et d’émission stimulée expliquant l’effet laser (l’émission spontanée, troisième mécanisme d’interaction qui engendre l’émission d’un photon à direction et phase aléatoire n’est pas abordée dans ce schéma).

Pour avoir un effet laser, il est nécessaire qu’il y ait davantage d’atomes dans l’état excité que dans l’état fondamental : il faut donc provoquer une « inversion de population » et donc sortir de l’état d’équilibre thermodynamique. Un tel déséquilibre est réalisé à partir de méthodes dites de «pompage» qui apportent sans cesse de l’énergie et intensifient la population d’atomes dans l’état excité. On augmente ainsi le taux d’émissions stimulées par « amplification résonante » en utilisant une cavité constituée de deux miroirs parallèles. Dans cette cavité résonante qui constitue un oscillateur optique, on obtient une amplification favorisant l’émission stimulée dans la direction de propagation de la lumière grâce à l’un des miroirs semi-réfléchissants qui permet au faisceau de sortir du dispositif.

Un laser se définit donc par trois éléments fondamentaux :

– Un milieu amplificateur optique de différents types (matériau gazeux, solide ou liquide). Dans ce milieu, on trouve des atomes, molécules, ions ou électrons dont les niveaux d’énergie sont utilisés pour accroître la puissance d’une onde lumineuse au cours de sa propagation. Le principe physique mis en jeu est l’émission stimulée.

– Un système d’excitation du milieu amplificateur (aussi appelé système de pompage) : il permet de créer les conditions d’une amplification lumineuse en apportant l’énergie nécessaire au milieu. Le système de pompage peut être de différente nature : pompage optique (le soleil, lampes flash, lampes à arc continues ou lampes à filament de tungstène, diodes laser ou autres lasers …), électrique (décharges dans des tubes de gaz, courant électrique dans des semi-conducteurs …) ou même chimique.

– La cavité qui permet de recycler les photons et d’obtenir par effet en cascade une amplification de la lumière déjà existante. La cavité la plus simple est constituée de deux miroirs, dont l’un est partiellement réfléchissant. Ce résonateur optique qui est un oscillateur laser permet donc de confiner l’onde à l’intérieur de la cavité, puis d’augmenter son parcours dans le milieu amplificateur, de façon à obtenir une amplification considérable. L’oscillateur laser peut être schématisé par la figure 2 avec ses éléments fondamentaux : le milieu amplificateur excitable, le système de pompage, et les miroirs formant la cavité, dont le miroir de sortie. Différentes techniques permettent d’obtenir une émission autour d’une seule longueur d’onde. Les longueurs d’ondes concernées étaient d’abord les micro-ondes (maser inventé en 1954 par Townes), puis elles se sont étendues aux domaines de l’infrarouge, du visible, de l’ultraviolet et commencent même à s’appliquer aux rayons X [[5],[6]].

Figure 2. Principe de fonctionnement du laser : 1 – milieu excitable ; 2 – énergie de pompage 3 ; – miroir totalement réfléchissant ; 4 – miroir semi-réfléchissant 5 – faisceau laser. Le composé 1, par exemple le gaz He-Ne ou un cristal (rubis, etc.) est placé entre les deux miroirs dont un laisse passer une petite partie de la lumière. Ce composé est ensuite excité de manière à libérer des photons lorsqu’il perd cette énergie (quand les électrons du composé passent à une couche inférieure). La taille du système qui correspond à la cavité résonnante est prévue pour que lorsqu’un photon heurte un miroir, deux photons repartent dans l’autre sens pour générer le faisceau laser (schéma d’après http://fr.wikipedia.org/wiki/Laser).

Les différents types de laser peuvent être classés suivant les caractéristiques qu’ils présentent, en deux grandes catégories :

Dans une première catégorie, sont classés les lasers selon le mode temporel d’émission. On trouve ainsi des sources émettant en mode dit continu (durée de l’impulsion constante, exemple τ>0,25s pour l’He-Ne) ; des sources dites impulsionnelles ou pulsées dont la fréquence et la puissance sont modulables. Ce sont des lasers utilisant une diode capable de fonctionner une très courte durée (quelques femtosecondes) mais avec énormément de puissance (près d’1 MW = 1 000 kW = 1 000 000 W pour les plus puissants).

Dans une seconde catégorie peuvent être classés les lasers pour lesquels la nature du milieu actif diffère [[7]].

  – Lasers à gaz tels que les lasers atomiques neutres (laser He-Ne, He-Cd, …), les lasers atomiques ionisés (Argon Ar+, Kryton Kr+) et les lasers moléculaires (CO2, excimères, etc.). Les lasers à gaz couvrent tout le spectre optique, depuis l’ultraviolet jusqu’à l’infrarouge lointain.

  – Lasers solides tels que le laser à rubis, Nd-YAG (grenat d’yttrium-aluminium dopé au néodyme Nd-YAG) etc. ;

– Lasers à colorants : utilisation de colorants pour avoir la longueur d’onde exacte désirée (au centième de nanomètre près) ;

– Lasers à semi-conducteurs à diode laser (les photons sont produits par deux semi-conducteurs traversés par un courant électrique) ; à électrons libres ;

– A fibres (le milieu amplificateur est une fibre optique dopée avec des ions rares).

 Définition des caractéristiques des émissions lasers

Un laser est caractérisé par sa longueur d’onde en nanomètre (1 nm : 10-9 mètre), son énergie en Joule (J), sa puissance en Watt (W), son irradiance, parfois appelée densité de puissance en Watt/centimètre carré (W/cm² ou mW/cm²), sa fluence ou dose délivrée en Joule/centimètre carré (J/cm²). 

 La longueur d’onde

Lorsque la longueur d’onde λ (lambda) se situe entre 400 nm et 750 nm, le rayon laser est visible à l’œil humain (exemple : He-Ne 632 nm : rouge ; argon 514 nm : vert). Les longueurs d’onde inférieures à 400 nm sont situées dans l’ultraviolet et celles supérieures à 750 nm figurent dans l’infrarouge. Le tableau I montre le spectre électromagnétique.  Les longueurs d’onde entre 633 à 670 nm sont la meilleure option pour la thérapie au laser de faible puissance avec une profondeur de pénétration n’excédant pas le centimètre [[8]].

 Tableau I. Spectre électromagnétique et exemples de longueur d’onde avec correspondance avec la fréquence en Hertz (Hz).

Longueur d’onde (dans le vide)DomaineFréquence 
supérieure à 10 mradioinférieure à 30 MHz 
de 30 cm à 1 mmmicro-onde (Wifi, téléphones portables, radar, etc.)de 1 GHz à 300 GHzincluse dans les ondes radios
de 500 μm à 780 nminfrarouge de 0,5 THz à 350 THzinfra-rouge C (3000nm- 1mm)(3µm-1000µm)infra-rouge B (1,4µm-3µm)infra-rouge A (780nm -1400 nm (1,4µm))
de 380 nm à 780 nmlumière visiblede 350 THz à 750 THzrouge (620-780 nm)
orange (592-620 nm)
jaune (578-592 nm)
vert (500-578 nm)
bleu (446-500 nm)
violet (380-446 nm)
de 100 nm à 380 nmultravioletde 750 THz à 30 PHz 
de 10 pm à 10 nmrayon Xde 30 PHz à 30 EHz 
inférieure à 10 pmrayon γsupérieure à 30 EHz 

L’énergie

L’énergie est la capacité d’un système à produire un travail, entraînant un mouvement ou produisant par exemple de la lumière, de la chaleur ou de l’électricité. C’est une grandeur physique qui caractérise l’état d’un système et qui est d’une manière globale conservée au cours des transformations. L’énergie s’exprime en joules (E= Puissance en mW x Temps en seconde). Exemple : 1J= 1 W-s (watt seconde).

La puissance

La puissance est la quantité d’énergie par unité de temps. L’unité de puissance est le watt qui correspond donc à un joule fourni par seconde. Ne pas confondre la puissance exprimée en watts (W) avec l’énergie exprimée en watt-heures (W-h) ou avec l’unité de variation de puissance exprimée en watts par heure (W/h). En vue de calculer la dose à administrer au point d’acupuncture, il est important de connaître la puissance de sortie du laser. En effet, deux types de laser sont utilisés en médecine : le laser de haute puissance (500mW-50W : hard laser) et le laser de faible puissance (5mW-500mW), encore appelé soft laser ou basse énergie. Celui-ci est utilisé en acupuncture pour ses propriétés non thermiques alors que le hard laser est réservé pour les techniques chirurgicales (scalpel, photo coagulation etc.).

L’irradiance

 Il s’agit de la densité de puissance qui quantifie la puissance d’un rayonnement électromagnétique par unité de surface. Elle s’exprime en watts par centimètre carré (W/cm²). I=P/S avec I : irrradiance ; P : puissance et S la surface.  

 La fluence

C’est l’énergie délivrée par unité de surface, encore appelée dose délivrée, dont l’unité est le J/cm².  F= E/S avec F : la fluence ; E : énergie et S : surface. Elle est fonction de l’irradiance et du temps d’application : irradiance x Temps = Fluence. Exemple : Pour traiter une surface de 8 cm2 avec une dose délivrée (fluence) de 3 J/cm2 et un laser de 50mW, il faut un temps de 20 sec x 3 J/cm2 x 8 cm2 = 480 sec soit 8 minutes alors qu’il faut seulement 90 sec avec 250 mW, 45 sec avec 500mW et 24 sec avec 1Watt.


Est ce que 1 J/cm² est équivalent à 1 W/cm² ? Différence entre fluence et irradiance.

En pratique, est ce qu’une dose délivrée sur la peau en 9 minutes de 32 J/cm2 à partir d’une source laser est équivalente à une irradiance de 32 W/cm2 en 9 minutes. Non car il existe un facteur de temps. Ainsi 1 watt n’est pas égal à 1 joule. La puissance en watts est égale à l’énergie en joules, divisée par le temps en secondes. 9 minutes = 540 secondes.  
Ainsi, une fluence de 32 J/cm ² administrée en 9 minutes est équivalente à une irradiance de 32 J/cm²/540s = 0,059 J/cm² s• = 0,059 W/cm ² 


Caractéristiques techniques des lasers de faible puissance

 La puissance se situe entre 10 et 500 mW. L’irradiance retrouvée habituellement est comprise entre 5mW/cm² et 5W/cm², la longueur d’onde est comprise entre 600 et 1000 nm et la fluence entre 0,05 et 20 J/cm².

La World Association for Laser Therapy (WALT) a proposé les doses recommandées pour un traitement optimal. Ainsi dans le canal carpien, avec un laser de longueur d’onde compris entre 780 et 860 nm, en émission d’une puissance entre 5 mW et 500 mW, les temps de traitement doivent être compris entre 20 et 300 secondes avec une application d’un minimum de 4 J par point pour un total de 8 J par poignet (traitement réalisé chaque jour pendant 15 jours ou tous les deux jours pendant 4 semaines). Il est nécessaire de différencier la fluence (J/cm²), de l’énergie (J), car par exemple une haute fluence peut facilement être obtenue en jouant sur la surface de traitement ou la surface du faisceau laser. Ainsi 1 joule appliquée sur une surface de 1 cm² (fluence=1 J/cm²) correspondra à une dose délivrée de 10 J/cm² sur une surface de 0,1cm² [9 ,10 ,11 ]. Il est donc important de connaître le diamètre du faisceau laser pour connaître la dose délivrée réelle.


Calcul de la fluence

Les paramètres : laser de 50 mW de puissance en émission constante ; diamètre du faisceau laser : 1 mm ; point traité pendant 5 secondes. Pour calculer la fluence, nous avons besoin de deux paramètres : la puissance et l’aire de distribution du faisceau.  Ainsi, 50 mW émis durant 5 s signifie qu’une énergie de 250 mJ =0,25 J a été émise du laser (0,75 J pour 15 secondes). L’aire est égale à 0,785mm², soit 0,00785cm² (1 mm de diamètre). En supposant que l’irradiance soit la même sur chaque point, la fluence sera donc de 0,25 J / 0,00785 cm² = 31,84 J/cm², fluence qui sera délivrée aux cellules en contact direct avec le faisceau laser, soit sur une aire de 0,785mm². Si on veut calculer la dose moyenne de la fluence délivrée sur une aire de 1cm² (diamètre 1,13cm) autour du point de puncture, nous retrouvons une fluence de 0,25 J/cm², ce qui veut dire que l’effet thérapeutique suivra une loi de distribution gaussienne avec effet maximum près de l’ouverture du faisceau et effets moindres plus on s’en éloigne.


Mécanismes d’action du laser de faible puissance

Les effets physiologiques de l’émission laser s’observent déjà pour une irradiance supérieure à 1,3W/cm² [3,[12]]. Une fluence de 4 J/cm2 est considérée comme la dose optimale pour la stimulation biologique d’un point sur la base de résultats empiriques [[13]] bien que de nouvelles recherches concernant le laser ultra faible puissance (3 mW ; 0,45mJ/cm²) objectiveraient également une photo-biostimulation [[14]]. Ainsi la TAL (670 nm ; 3mW ; 0,21 mJ/mm² par point) appliquée sur ES36 et TR5 aurait un effet anti-œdémateux et antalgique sur un modèle de douleur inflammatoire et neuropathique chez le rat. Pas d’action par contre sur la douleur viscérale [[15]].

Mester en 1968 a été le premier à réaliser des travaux de recherche concernant les effets non thermiques des lasers sur la croissance des cheveux de la souris [[16]]. Dans une étude ultérieure [[17]], le même groupe a rapporté une accélération de la cicatrisation des plaies et l’amélioration de la capacité de régénération des fibres musculaires après lésion grâce à un laser basse énergie à rubis (694 nm) d’une fluence d’un 1 J/cm2.

A la différence des lasers forte puissance qui induisent des effets thermiques, l’un des traits les plus marquants des lasers faible puissance est que les effets sont plutôt médiés par un processus appelé photobiostimulation. On utilisera en règle générale des sources de rayonnement dans la région spectrale rouge et proche infrarouge (620 à 1200 nm de longueur d’onde), pour la raison que l’hémoglobine n’absorbe pas ce rayonnement. De ce fait, l’émission laser peut pénétrer plus profondément dans les tissus vivants et interréagir [[18]].

Effets d’absorption tissulaire du rayonnement laser

Outre les spécificités physiques précédemment décrites, il convient effectivement de connaître la profondeur d’absorption du rayonnement laser dans le tissu cutané, ceci afin d’en comprendre le mécanisme d’action. En effet, la structure du tissu se compose essentiellement de chromophores comme l’eau, l’hémoglobine et les pigments tels la mélanine, la bilirubine ou le carotène. Il existe une « fenêtre optique » comprise entre 600 et 1300 nm pour laquelle la pénétration est maximale. Au-delà de 1300 nm, l’eau va absorber toute l’énergie, tout comme en dessous de 600 nm, le rayonnement sera absorbé par l’hémoglobine et les pigments [[19],[20]].

 Figure 3. Coefficients d’absorption en mm des trois principaux chromophores biologiques (oxyhémoglobine, mélanine et eau) en fonction de la longueur d’onde (d’après [20]).

Ainsi sur un échantillon de peau abdominale humaine de 0,784mm d’épaisseur, l’intensité du rayonnement laser (longueur d’onde 850 nm ; 100mW ; 0,28mm du diamètre de la sonde) est réduite de 66%.  Cela suggère que le rayonnement laser est absorbé dans le premier mm du tissu cutané [[21]]. Notons que le derme qui a une épaisseur moyenne de 1 à 2 mm, est une des trois couches constitutives de la peau comprise entre l’épiderme et l’hypoderme. Il est formé de tissu conjonctif principalement composé d’une matrice extracellulaire produite par des fibroblastes qui interviennent justement dans la mécanotransduction induite par l’acupuncture [[22]]. Ankri et coll. suggèrent que la longueur d’onde optimale pour un effet thérapeutique dans la cicatrisation des lésions est de 730 nm car la pénétration va jusqu’à 1,6mm de profondeur et 0,5mm pour une longueur d’onde à 480 nm [[23]]. Cependant la pénétration du laser diffère aussi selon les localisations cutanées. Ainsi le faisceau laser He-Ne (632,8 nm ; 50 mW) pénètre à 80,5% dans un tissu abdominal de 0,03mm d’épaisseur ; à 6,5% dans un tissu de 2,60mm ; à 0,3% pour 19mm. Au niveau de la face antérieure du bras la pénétration n’est que de 58% pour un tissu cutané de 0,024 mm d’épaisseur et descend à 10% pour un tissu cutané de 1,5mm. Les résultats montrent que la pénétration du rayonnement laser diffère selon les différentes localisations à la surface de la peau [[24]], tout comme on piquera plus ou moins profondément selon les concepts de la médecine traditionnelle chinoise.

Effets photobiologiques de l’émission laser

On peut considérer que les effets photobiologiques vont résulter d’effets primaires ou directs avec stimulation de la microcirculation (effets sur l’angiogenèse, stimulation trophique au niveau cellulaire) engendrant à leur tour des effets indirects : effets anti-inflammatoires et anti-œdémateux, antalgiques, immunosuppresseurs, trophiques et cicatrisants, effets antiallergiques, effets de détoxification par activation des radicaux libres. A ce jour, plusieurs mécanismes d’action biologique ont été proposés, mais aucun n’est clairement établi et satisfaisant. Par ailleurs, ces effets ont été démontrés en utilisant des dispositifs de laser de faible puissance variables et souvent non comparables. Pour ajouter à la confusion, il existe un effet dose-dépendant actif sur une gamme étroite de longueur d’ondes qui peuvent disparaître avec l’augmentation de la dose délivrée. En effet, les effets de la biostimulation par le laser sont régis par la loi d’Arndt-Schultz à savoir que des stimuli faibles activent l’activité physiologique cellulaire alors que les stimuli intenses les diminuent jusqu’à engendrer une réponse négative [[25],[26]]. Selon cette loi, la biostimulation apparaît à une fluence comprise entre 0,05 et 10 J/cm² [[27]], avec une valeur optimale comprise entre 0,5 et 4 J/cm² [[28]] (figure 4).

Figure 4. La loi d’Arndt-Schultz pour thérapie par laser de faible puissance (d’après [28 ]). 

 Effets directs

 Sur la cellule

La stimulation laser à faible puissance favorise la prolifération de plusieurs cellules, principalement à travers l’activation de la chaîne respiratoire mitochondriale et l’initiation de la signalisation cellulaire. Gao et coll. ont réalisé une revue de littérature concernant ces effets et ont montré l’implication des récepteurs à tyrosine kinase (TPKR) qui sont phosphorylés. Les TPKR activés pourraient engendrer à leur tour des éléments de signalisation par transduction (Ras/Raf/MEK/ERK, PI3K/Akt/PI3K/Akt/eNOS etc.). Il y a aussi implication de deux autres voies de transduction : ATP/cAMP/JNK/AP-1 et ROS/Src (dérivés réactifs de l’oxygène). Cela aboutit en aval à la synthèse ou la libération de nombreuses molécules, comme les facteurs de croissance, les interleukines, les cytokines inflammatoires etc. [[29]]. Ces mécanismes cellulaires sont similaires à ceux observés par l’action de l’aiguille d’acupuncture qui déclenche une transduction dans le tissu conjonctif [[30]].

Sur l’angiogenèse et le flux sanguin

Il a été objectivé chez le lapin que le laser (830 nm ; 60 mW ; 40 mW/mm² ; 1,4mm de diamètre, 39 mW/cm² déclenchait une accélération de la vélocité du flux sanguin, une augmentation du diamètre des artérioles dans les groupes traités par acupuncture ou par laser en rapport avec l’accroissement de la concentration en oxyde nitrique (NO) [[31]]. De la même façon, chez l’être humain, on pourra observer un accroissement de la microcirculation par activation de la NO, synthèse via la synthase NO (NOS) pour une longueur d’onde de 385-750 nm (40 mW/cm2, 12 J/cm2) [[32]].Wang et coll. observent même chez des volontaires sains que la TAL (405 nm, 110 mW) appliquée sur 14VG (dazhui) accélère les effets vasculaires périphériques de la microcirculation érythrocytaire [[33]].  

 Effets anti-inflammatoires

 Chez la souris, on observe qu’une fluence de 5 J/cm² pour des longueurs d’onde variant de 635 nm à 905 nm peuvent déclencher une modulation de la réponse inflammatoire en entraînant une régulation positive (uprégulation) de l’expression des gènes de la synthase inductible de l’oxyde nitrique (iNOS) [[34]]. Cela est à nouveau confirmé sur un modèle de blessure musculaire chez le rat Wistar bénéficiant d’une émission par diode laser (GaAlAs) avec les paramètres suivants : mode continu, 808 nm, 30 mW de puissance, 47 secondes d’émission, surface stimulée : 0,00785 cm2, fluence : 180 J/cm2, irradiance 3,8 W/cm2, avec une énergie totale de 1,4 J par point. On retrouve une réduction du stress oxydatif dans le groupe des rats traités (n=20) versus groupe contrôle non traité (n=20) par diminution de la production d’oxyde nitrique (NO), probablement en rapport avec la réduction de la forme inductible (iNOS) de l’oxyde nitrique. En outre, la thérapie par laser de faible puissance (TLFP) augmente l’expression du gène de la superoxide dismutase (SOD, antioxydant permettant de lutter contre les radicaux libres de type ROS) et une réduction de la réponse inflammatoire mesurée par la diminution de l’expression du gène du NF-kβ, de la cyclooxygénase-2 (COX2), inhibant la libération de cytokines pro-inflammatoires comme le TNF-α, et l’interleukine IL-1β [[35]].

Un travail très récent sur un modèle de lésion musculaire inflammatoire chez le rat confirme que la TLFP (904 nm ; pulsé à 700 Hz ; 60 mW ; irradiance =1,67 W/cm² ; 1 J) diminue de manière significative (p <0,05) les cytokines inflammatoires telles que l’IL-1β, IL-6 et les concentrations de TNF-α par rapport au groupe non traité ainsi que les groupes diclofénac et cryothérapie [[36]].

Piva et coll. ont analysé vingt-deux travaux de recherche réalisés aussi bien in vitro (chez l’animal) qu’in vivo (chez l’homme). Ils ont conclu que la TLFP exerce un important effet anti-inflammatoire précoce dans les processus de cicatrisation en réduisant les cytokines pro-inflammatoires comme l’IL-1β, l’IL-2, les IL-6 et 10, le facteur de nécrose tumorale alpha (TNF-α), l’histamine, la prostaglandine E2 (PGE2). Par ailleurs, la TLPF réduit aussi la migration des cellules inflammatoires comme les leucocytes, les neutrophiles et augmente les facteurs de croissance tels que le fibroblast growth factor-2 (FGF-2), le platelet-derived growth factor (PDGF), l’insulin-like growth factor 1 (IGF-1) et l’insulin-like growth factor-binding protein 3 (IGFBP3) etc. Les auteurs montrent néanmoins un manque de standardisation sur le choix des paramètres physiques et observent par exemple que la plupart des lasers utilisés concernaient la longueur d’onde comprise entre 632,8 et 685 nm [[37]].

Effets analgésiques

Sur un modèle de rat, la stimulation du point zusanli (36ES) bilatéralement par laser pendant 6 secondes (830 nm ; 30 mW ; 1,6 mm de diamètre de faisceau ; 3 J/cm², 6 mm² d’aire, 180 mJ) inhibe les contractions abdominales induites par injection d’acide acétique intra-péritonéale et à la fois les douleurs nociceptives et inflammatoires induites par le formaline. Les auteurs démontrent que ces effets sont médiés par l’activation des systèmes opioïdes (β endorphine) et sérotoninergiques (récepteurs 5-HT1 et 5-HT2A, mais pas les récepteurs 5-HT3) [[38]]. Ce travail corrobore l’étude réalisée par Hagiwara et coll. qui objectivait l’effet analgésique du laser en rapport avec la libération de β endorphines [[39]].

 Effets antiallergiques

 La stimulation de la muqueuse intra-nasale incluant le point hors méridien neiyingxiang (EX-HN9) par un dispositif laser de faible puissance (658 nm, 30 mW, 0,2 cm², 320s :1000 mJ/cm² et 640s : 2000 mJ/cm²) sur un modèle de rhinite allergique chez la souris entraîne une inhibition statistiquement significative de la concentration totale en IgE, en interleukine IL-4, en interféron de type II (IFN-γ) et en TARC (CCL17), chimiokine en rapport avec une réponse humorale des lymphocytes Th2. Il sera noté que la faible fluence 1000 mJ/cm² est plus efficace que la haute fluence (2000 mJ/cm²). Les auteurs notent l’importance de la dose thérapeutique optimale, sans doute en rapport avec la loi d’Arndt-Schultz [[40]].

 Conclusion

Le laser provoque peu ou pas de sensations, avantage notable pour tous ceux ayant peur des aiguilles d’acupuncture, ou en pédiatrie. Néanmoins, il est important d’en connaître ses caractéristiques physiques.  Plusieurs mécanismes d’action biologique ont été proposés. Aucun n’est clairement établi et satisfaisant car trop de variables influent sur les résultats. Aussi, des essais contrôlés randomisés sont nécessaires pour mieux définir les paramètres d’un traitement optimal, incluant la longueur d’onde, l’irradiance, la fluence et l’énergie du laser, afin de maximiser les avantages physiologiques et la rentabilité de cette technique thérapeutique associée à l’acupuncture.

Références

[1]. Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM. Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of  randomised placebo or active-treatment controlled trials. Lancet. 2009;374(9705):1897-908.

[2]. Kadhim-Saleh A, Maganti H, Ghert M, Singh S, Farrokhyar F. Is low-level laser  therapy in relieving neck pain effective? Systematic review and meta-analysis. Rheumatol Int. 2013;33(10):2493-501.

[3]. Litscher G, Schikora D. Laserneedle-Acupuncture Science and Practice. Lengerich, Germany: Pabst Science Publishers; 2005. 

[4]. Glazov G, Yelland M, Emery J. Low-dose laser acupuncture for non-specific chronic low back pain:a double-blind randomized controlled trial. Acupunct Med 2014;32:116-123. 

[5].Fadel K. Le laser : histoire d’un rayon. Science.gouv.fr. Juillet 2010. [cited 2014 jan 20]. Available from: URL: http://www.science.gouv.fr/fr/dossiers/bdd/page/3/res/2970/t/18/le-laser-histoire-d-un-rayon/. 

[6]. Balembois F, Forget S. Le laser : fondamentaux ; lasers et optique non linéaire. Optique pour l’ingénieur. Mai 2007. [cited 2014 jan 20].  Available from: URL: http://www.optique-ingenieur.org/fr/cours/OPI_fr_M01_C01/co/Grain_OPI_fr_M01_C01.html.

[7]. Lelek M. Sécurité laser. Optique pour l’ingénieur. Mai 2007. [cited 2014 jan 20].  Available from: http://www.optique-ingenieur.org/fr/cours/OPI_fr_M01_C02/co/Contenu.html

[8]. Litscher G, Opitz G. Technical Parameters for Laser Acupuncture to Elicit Peripheral and Central Effects: State-of-the-Art and Short Guidelines Based on Results from the Medical University of Graz, the German Academy of Acupuncture, and the Scientific Literature. Evid Based Complement Alternat Med. 2012;2012:697096. doi: 10.1155/2012/697096.

[9]. World Association for Laser Therapy. Recommended treatment doses for Low Level Laser Therapy. 2012. [cited 2014 march 07].Available from: http://www.walt.nu/dosage-recommendations.html.

[10]. David Baxter G. Laser acupuncture: effectiveness depends upon dosage. Acupunct Med. 2009 Sep;27(3):92.

[11]. Tunér J, Hode L. Low-level laser therapy for hand arthritis-fact or fiction? Clin Rheumatol. 2010 Sep;29(9):1075-6.

[12]. Litscher G, Bauernfeind G, Mueller-Putz G, Neuper C. Laser-induced evoked potentials in the brain after nonperceptible optical stimulation at the neiguan acupoint: a preliminary report. Evid Based Complement Alternat Med. 2012;2012:292475 doi: 10.1155/2012/292475..

[13]. Australian Medical Acupuncture College. Position statement on laser acupuncture, 2012. Available from : URL : http://www.chiro.org/acupuncture/FULL/Position_Statement_on_Laser_Acupuncture.shtml.

[14]. Baratto L, Calzà L, Capra R, Gallamini M, Giardino L, Giuliani A, Lorenzini L, Traverso S. Ultra-low-level laser therapy. Lasers Med Sci. 2011 Jan;26(1):103-12.

[15]. Lorenzini L, Giuliani A, Giardino L, Calzà L. Laser acupuncture for acute inflammatory, visceral and neuropathic pain relief: An experimental study in the  laboratory rat. Res Vet Sci. 2010 Feb;88(1):159-65.

[16]. Mester E, Szende B, Gärtner P. [The effect of laser beams on the growth of hair in mice]. Radiobiol Radiother (Berl). 1968;9(5):621-6.

[17]. Mester E, Korényi-Both A, Spiry T, Tisza S. The effect of laser irradiation on the regeneration of muscle fibers (preliminary report). Z Exp Chir. 1975;8(4):258-62.

[18]. Vladimirov YA, Osipov AN, Klebanov GI. Photobiological principles of therapeutic applications of laser radiation. Biochemistry (Mosc). 2004 Jan;69(1):81-90. 

[19]. Anderson RR, Parrish JA. The optics of human skin. J Invest Dermatol. 1981 Jul;77(1):13-9.

[20]. Allemann IB, Goldberg DJ. Basics in Dermatological Laser Applications. 1e ed. Basel (Suisse): Karger Medical and Scientific Publishers; 2011.

[21].  Esnouf A, Wright PA, Moore JC, Ahmed S. Depth of penetration of an 850nm wavelength low level laser in human skin. Acupunct Electrother Res. 2007;32(1-2):81-6.

[22]. Stéphan JM. Acupuncture, tissu conjonctif et mécanotransduction. Acupuncture & Moxibustion. 2006;5(4):362-367.

[23]. Ankri R, Lubart R, Taitelbaum H. Estimation of the optimal wavelengths for laser-induced wound healing. Lasers Surg Med. 2010 Oct;42(8):760-4.

[24]. Kolárová H, Ditrichová D, Wagner J. Penetration of the laser light into the skin in vitro. Lasers Surg Med. 1999;24(3):231-5.

[25]. Lubart R, Lavi R, Friedmann H, Rochkind S. Photochemistry and photobiology of  light absorption by living cells. Photomed Laser Surg. 2006 Apr;24(2):179-85.

[26]. Lin F, Josephs SF, Alexandrescu DT, Ramos F, Bogin V, Gammill V, Dasanu CA, De Necochea-Campion R, Patel AN, Carrier E, Koos DR. Lasers, stem cells, and COPD. J Transl Med. 2010 Feb 16;8:16.

[27]. Yu W, Naim JO, Lanzafame RJ. Effects of photostimulation on wound healing in diabetic mice. Lasers Surg Med. 1997;20(1):56-63.

[28]. Tunér J, Hode L. The New Laser Therapy Handbook. Grängesberg, Sweden: Prima Books; 2010.

[29]. Gao X, Xing D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci. 2009;16:4.

[30].  Stéphan JM. Acupuncture, récepteurs transmembranaires à tyrosine-kinases, à cytokines et transduction. Acupuncture & Moxibustion. 2007;6(1):79-86.

[31]. Komori M, Takada K, Tomizawa Y, Nishiyama K, Kondo I, Kawamata M, Ozaki M. Microcirculatory responses to acupuncture stimulation and phototherapy. Anesth Analg. 2009 Feb;108(2):635-40.

[32]. Samoilova KA, Zhevago NA, Petrishchev NN, Zimin AA. Role of nitric oxide in the visible light-induced rapid increase of human skin microcirculation at the local and systemic levels: II. healthy volunteers. Photomed Laser Surg. 2008;26(5):443-9.

[33]. Wang L, Huang T, Zhang W, Litscher G. Violet laser acupuncture–part 2: Effects on peripheral microcirculation. J Acupunct Meridian Stud. 2011;4(1):24-8.

[34]. Moriyama Y, Nguyen J, Akens M, Moriyama EH, Lilge L. In vivo effects of low level laser therapy on inducible nitric oxide synthase. Lasers Surg Med. 2009;41(3):227-31.

[35]. Assis L, Moretti AI, Abrahão TB, Cury V, Souza HP, Hamblin MR, Parizotto NA. Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion. Lasers Surg Med. 2012;44(9):726-35.

[36]. de Almeida P, Tomazoni SS, Frigo L, de Carvalho Pde T, Vanin AA, Santos LA, Albuquerque-Pontes GM, De Marchi T, Tairova O, Marcos RL, Lopes-Martins RA, Leal-Junior EC. What is the best treatment to decrease pro-inflammatory cytokine release in acute skeletal muscle injury induced by trauma in rats: low-level laser therapy, diclofenac, or cryotherapy? Lasers Med Sci. 2014 Mar;29(2):653-8.

[37]. Piva JA, Abreu EM, Silva Vdos S, Nicolau RA. Effect of low-level laser therapy on the initial stages of tissue repair: basic principles. An Bras Dermatol. 2011 Sep-Oct;86(5):947-54.

[38]. Erthal V, da Silva MD, Cidral-Filho FJ, Santos AR, Nohama P. ST36 laser acupuncture reduces pain-related behavior in rats: involvement of the opioidergic and serotonergic systems. Lasers Med Sci. 2013;28(5):1345-51.

[39]. Hagiwara S, Iwasaka H, Okuda K, Noguchi T. GaAlAs (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. Lasers Surg Med. 2007;39(10):797-802.

[40]. Choi B, Chang MS, Kim HY, Park JW, Ryu B, Kim J. Effects of low level laser therapy on ovalbumin-induced mouse model of allergic rhinitis. Evid Based Complement Alternat Med. 2013;2013:753829. 

Stéphan JM. Laser de faible puissance et utilisation en acupuncture : principes physiques et mécanismes d’action. Acupuncture & Moxibustion. 2014;13(2):119-127. (Version PDF)

Mécanismes neurophysiologiques de l’électroacupuncture dans les algies

Pont Dom-Luís – Porto – Portugal
Pont Dom-Luís – Porto – Portugal


Résumé :  
Dès la fin des années 1970, les mécanismes neurophysiologiques de l’électroacupuncture dans les algies commencent à être dévoilés. Les peptides opioïdes endogènes (endorphines, enképhalines, dynorphines, endomorphines) et leurs récepteurs µ,  κ , δ, le système anti-opioïde (nociceptine, CCK-8…), le glutamate et ses récepteurs ionotropiques AMPA, KA, NMDA et enfin le système inhibiteur descendant faisant intervenir sérotonine et cathécolamines sont les différents mécanismes que l’électroacupuncture active en fonction de la fréquence électrique. Par l’exploration expérimentale chez l’animal, mais aussi chez l’homme par les techniques d’imagerie (IRM fonctionnelle, tomographie par émission de positons), on sait maintenant que les aires cérébrales activées correspondent à celles impliquées dans la douleur (par activation ou inactivation) : systèmes hypothalamique, limbique et paralimbique, mais aussi tronc cérébral et corne dorsale de la moelle épinière. Mots-clés : électroacupuncture – endorphine – dynorphine – anti-opioïdes – CCK-8 –  système inhibiteur descendant – IRMf – TEP – système limbique.

Summary: In the late 1970’s, the neurophysiological mechanisms of electroacupuncture pain in the beginning to be unveiled. The endogenous opioid peptides (endorphins, enkephalins, dynorphins, endomorphins) and theirs µ, κ , δ receptors, antiopioids system (nociceptin, CCK-8…), glutamate and his ionotropics AMPA, KA, NMDA receptors then finally the descending inhibitory system involving serotonin and cathecolamins are the different mechanisms that electroacupuncture active as a function of frequency electric. By exploring experimental animals, but in humans through imaging techniques (functional MRI, positron emission tomography), we now know that the brain areas activated correspond to those involved in pain (activation or inactivation): hypothalamic and limbic systems, but also brain stem and dorsal horn of the spinal cord. Keywords: electroacupuncture – endorphin – dynorphin – antiopioid – descending inhibitory system – CCK-8 – fMRI – PET.

Les molécules informationnelles, substances chimiques produites par une cellule vivante pour transmettre un signal à une autre cellule qui le reçoit à son tour par un récepteur spécifique, sont à la base de l’Acupuncture. De nombreuses molécules sont issues des voies de la mécanotransduction ou de la transduction [[1],[2]] et certaines d’entre-elles interviennent dans l’obtention des effets de l’acupuncture et/ou de l’électroacupuncture (EA). La démonstration de récepteurs spécifiques aux alcaloïdes au niveau cérébral a permis de découvrir des ligands naturels endogènes, les opioïdes actifs à structure peptidique (neuropeptides) qui jouent le rôle de médiateurs ou de neuromodulateurs. Le glutamate, un autre neurotransmetteur excitant majeur et ses récepteurs ionotropiques NMDA, AMPA et kainate (KA) interviennent aussi dans la modulation des algies par électroacupuncture ainsi que le système inhibiteur descendant sérotoninergique et noradrénergique. Grâce à l’imagerie cérébrale, il est possible d’observer les différentes cibles du système nerveux central intervenant dans l’électroacupuncture.

 Rappels neurophysiologiques de la douleur

Les stimulations nociceptives activent les terminaisons libres des nocicepteurs C ou Aδ. La physiologie de la douleur aiguë puis chronique a beaucoup profité des progrès de la biologie moléculaire qui a permis de découvrir une « soupe » inflammatoire complexe périphérique : ATP et récepteur purinergique P2X3, récepteur vanilloïde sensible à la chaleur, bradykinine, substance P et CGRP (calcitonin gene-related peptide), nerve growth factor etc.. Les acides aminés excitateurs comme le glutamate, sérotonine, peptides opioïdes etc.. vont moduler la transmission de cette douleur de la première synapse à l’arrivée des fibres périphériques dans la moelle. Puis un relais s’effectuera vers des cibles supraspinales : bulbe, mésencéphale, thalamus, système limbique et cortex. Le caractère douloureux dépendra d’une balance entre des influx excitateurs et inhibiteurs comme le système inhibiteur descendant issu du tronc cérébral. Nous allons découvrir les principales molécules agissantes de l’électroacupuncture.

Les peptides opioïdes endogènes

Localisation de la synthèse des neuropeptides

Ces endorphines sont synthétisées à deux niveaux :

– dans le système nerveux central (SNC) : corne dorsale de la moelle épinière, substance réticulée (noyaux du raphé médian et para-médian et les noyaux giganto-cellulaires), les ganglions de la base (noyau caudé, putamen, noyau sous-thalamique, pars lateralis, pallidum), mésencéphale (substance grise périaqueducale, noyau inter-pédonculaire, noyau parabrachial, noyau du faisceau solitaire, substance noire), amygdale, hippocampe, diencéphale (hypothalamus, lobe antérieur de l’hypophyse, thalamus), cervelet ; cortex cérébral (sauf occipital) ; 

– dans le système nerveux périphérique : neurones du ganglion mésentérique, neurones intrinsèques ou cellules endocrines de l’intestin, pancréas, cœur, poumons, médullo-surrénales et les organes de la reproduction.

Les différents opioïdes et leurs récepteurs

Trois familles de neuropeptides se distinguent par leur précurseur protéique spécifique dont elles sont issues par protéolyse : la proopiomélanocortine (POMC), la préproenképhaline (PPE) et la préprodynorphine (PPD). Les endorphines résultantes de la protéolyse de ces précurseurs préotéiques ont la même séquence amino-terminale identique Tyr-Gly-Gly-Phe-Met (Met-enképhaline) ou Tyr-Gly-Gly-Phe-Leu (Leu-enképhaline) (figure 1). La protéolyse de la POMC produit entre autres neuropeptides, l’hormone adénocorticotrope (ACTH), l’alpha MSH, la β-lipotrophine, les bêta endorphines. La PPE engendre les Met-enképhalines et peptides voisins ; la PPD les dynorphines et les néoendorphines. On a isolé plus de 20 peptides issus de ces trois familles avec une exception, les endomorphines 1 et 2 qui ne possèdent pas la séquence pentapeptique, mais quatre acides aminés [[3]]. Leur rôle comme neurotransmetteur ou neuromodulateur est très probable mais incomplètement élucidé.

Figure 1. Structure des enképhalines.

Plusieurs récepteurs opioïdes ont, eux aussi, été identifiés et différenciés.

Dans le SNC, trois classes principales sont distinguées : µ (mu/OP3/MOR) avec les sous types μ1, μ2,  κ (kappa/OP2/KOR) avec les sous-types κ1, κ2, κ3, δ (delta/OP1/DOR). Certaines observations suggèrent l’existence d’autres types de récepteurs : epsilon (ε), zêta (ξ) et lambda (λ). Une substance opioïde donnée peut interagir avec les trois récepteurs différents et se comporter, pour l’un, comme un agoniste, pour l’autre, comme un agoniste partiel ou même comme un antagoniste. Pour cette raison, il peut exister des différences d’effets entre les opioïdes. Les morphiniques agissent par l’activation d’une protéine G couplée aux récepteurs µ, κ , δ par le mécanisme de transduction [[4]].

Les enképhalines par exemple, activent divers types de récepteurs du SNC, parmi lesquels les récepteurs μ (mu), μ1, μ2, et κ1, κ2, κ3, sont les mieux décrits. L’activation des récepteurs µ, appelés aussi OP3 (Opioid receptor) engendre les effets morphiniques des endorphines et entraîne analgésie, dépression respiratoire, constipation, dépendance, myosis, hypothermie. Le récepteur δ est plus spécifique des enképhalines qui sont co-sécrétées avec les catécholamines par la médullosurrénale entraînant l’euphorie et l’analgésie également. L’activation des récepteurs κ qui présentent une affinité particulière pour les dynorphines, provoque analgésie, sédation, myosis. L’analgésie par les morphiniques peut provenir de l’activation des récepteurs μ et κ et la dépendance par l’activation des récepteurs μ (voir tableau résumé I).

Tableau I : Classification  des opioïdes et effets de leurs différents récepteurs.

ClasseRécepteursEffets pharmacologiquesLocalisation de la synthèse
Endorphines (α,β,γ endorphines)récepteur μμ1 : effet analgésiqueμ2 : dépression respiratoire, bradycardie, myosis, constipation        effet émétiquehypothalamus, hypophyse, hippocampestriatum, noyau caudé, putamen,  néocortex, thalamus, noyau accumbens, amygdaIecorne dorsale moelle épinière, substance grise périaqueducale, noyaux du raphé..cortex olfactifintestin grêle ; placenta ; plasma
Enképhalines (Met et Leu-Enképhaline)récepteur δanalgésique, euphorique,convulsifdépressif respiratoiresystème limbique, amygdales, striatum,noyau accumbensthalamus, corne dorsale moelle épinièretube digestif, système nerveux autonomesurrénales
Dynorphines (α,β dynorphines et A et B Néoendorphines)récepteur κ analgésique, endocriniens, sédatifdysphorique, myosishypothalamus,hypophysecorne dorsale moelle épinièretube digestif
Endomorphines 1 et 2récepteurs μanalgésiquemoelle épinière (corne dorsale), SNC

Le système anti-opioïde

Le SNC synthétise et libère des molécules, que l’on peut qualifier d’anti-opioïdes qui sont libérées à la suite de la prise de toute substance capable de stimuler les récepteurs des opioïdes. Il s’agit des réseaux neuronaux capables de s’opposer aux actions des opioïdes et qui peuvent expliquer en partie la tolérance et la dépendance. Récemment un nouveau type de récepteur a été ainsi identifié et appelé récepteur-orphelin aux opiacés, ORL1 (opioid receptor-like / OP4) dont l’agoniste est la nociceptine. Les principales molécules anti-opioïdes sont la cholécystokinine-8 (CCK-8), la neuropeptide FF (NPFF), la melanocyte inhibiting factor (MIF) et la nociceptine appelée auparavant orphanine FQ, protéine neuropeptide de 17 acides aminés ayant des similarités avec la dynorphine A (voir tableau II).

Tableau II : Classification  des anti-opioïdes et effets de leurs différents récepteurs.

ClasseRécepteursEffets pharmacologiquesLocalisation de la synthèse
nociceptine ou orphanine FQORL1Pronociceptif et antiopioïde au niveau supraspinalAnalgésique / antinociceptive au niveau spinalanxiolytiqueRégions limbiques
cholécystokinine-8 (CCK-8)Récepteurs CCK-A (système digestif)Récepteurs CCK-B (SNC)AnorexigènePronociceptifAnti-amnésiantModulateur anxiétéTube digestifSystème nerveux central
neuropeptide FF (NPFF)très faible affinité pour les récepteurs μ, δ et kPronociceptifSystème nerveux central
melanocyte inhibiting factor (MIF)Agonistes partiels des récepteurs de type μPronociceptifSystème nerveux central

 Système inhibiteur descendant supraspinal

Il existe deux types de contrôle inhibiteurs descendants.

Contrôle descendant issu du tronc cérébral et déclenché par des stimulations cérébrales

La stimulation chez l’animal du raphé, du bulbe (région bulbaire rostro-ventrale comprenant le noyau raphé magnus, le noyau giganto-cellulaire, le noyau réticulé latéral du tractus solitaire), du pont et du mésencéphale (substance grise périaqueducale) entraîne une analgésie par blocage des entrées nociceptives dans le système nerveux central. Les neurones du raphé sont sérotoninergiques et se projettent dans la partie dorsale du faisceau latéral de la moelle (funiculus dorsal), mais sont aussi interconnectés au locus coeruleus, structure noradrénergique. Il y a donc aussi une implication d’un contingent de fibres noradrénergiques mais aussi des substances opioïdes

Contrôle inhibiteur descendant déclenché par des stimulations nociceptives  (CIDN)

Ce contrôle est déclenché par stimulation nociceptive (CIDN) périphérique. La structure impliquée est la réticulée bulbaire. Les neuromédiateurs sont endorphiniques et sérotoninergiques.

Le glutamate et ses principaux récepteurs

Le glutamate

Il intervient comme neurotransmetteur excitateur qui libéré dans l’espace synaptique, à partir des terminaisons neuronales, se fixe sur ses récepteurs postsynaptiques dont l’activation induit la dépolarisation du neurone cible. Cependant, si la régulation de cette transmission synaptique est altérée et l’activation des récepteurs prolongée, il peut y avoir maintien d’une dépolarisation accrue conduisant à la mort cellulaire. On a montré que l’injection par voie systémique de glutamate ou d’autres acides aminés excitateurs (AAE) à des animaux immatures entraînait des dégénérescences dans des aires du cerveau qui ne sont pas protégées par la barrière hémato-encéphalique. Depuis, de nombreuses études ont mis en évidence la toxicité des AAE, ou excitotoxicité. Le glutamate en trop grande concentration a été ainsi mis en cause dans l’étiologie de nombreuses pathologies du système nerveux central : lésions traumatiques du SNC, maladies neurodégénératives aiguës, maladies neurodégénératives inflammatoires (scléroses multiples), maladies neurodégénératives chroniques (Alzheimer, Chorée de Huntington, SLA).

Les récepteurs ionotropiques du glutamate

Le glutamate agit sur trois récepteurs canaux distincts dénommés par le nom de leur agoniste le plus sélectif : les récepteurs N-méthyl-D-aspartate (NMDA), kainate (KA) et a-amino-3-hydroxy-5-métyl-4-isoxazolepropionate (AMPA). Ces trois récepteurs sont des récepteurs ionotropiques capables de transmettre instantanément un message au neurone cible par modification du potentiel de la membrane post-synaptique en quelques millièmes de secondes.

On a mis en évidence deux familles de récepteurs, respectivement AMPA et kainate (KA) à la fin des années 1970. Les sous-unités AMPA et kainate peuvent être colocalisées au sein d’un même neurone mais ne peuvent s’assembler entre-elles. Les différentes sous-unités des récepteurs AMPA/KA sont abondamment exprimées dans l’ensemble du SNC. Les récepteurs NMDA sont quant à eux mis en jeu dans de nombreux mécanismes physiologiques comme la différenciation neuronale et la formation des connections synaptiques au cours du développement. Chez l’adulte, le récepteur NMDA est impliqué dans l’apprentissage et la mémoire à court terme. Les récepteurs au NMDA jouent aussi un rôle important dans différents processus physiologiques en augmentant la transmission du processus douloureux. La kétamine est un antagoniste des récepteurs au NMDA et son injection produit une analgésie puissante.

 Neurophysiologie de l’action de l’électroacupuncture

Electroacupuncture analgésique expérimentale

Découverte des opioïdes

Le premier travail expérimental sur l’analgésie acupuncturale fut réalisé dans les années 1970 chez 60 étudiants en médecine volontaires [[5]]. La douleur fut induite par ionophorèse potassique à travers la peau. Le seuil à la douleur fut mesuré après insertion et manipulation pendant 50 minutes des aiguilles d’acupuncture au GI4 et ES36. Dans le groupe contrôle, 10 mg de morphine en intra-musculaire augmente le seuil de douleur en moyenne de 80 à 90%. Dans le groupe acupuncture, on observa de façon identique une augmentation graduelle du seuil à la douleur avec un pic au bout de 20 à 40 minutes après l’insertion de l’aiguille. En cas d’injection de procaïne, anesthésique local, l’effet de l’acupuncture est annulé, ce qui suggère que l’effet nécessitait des récepteurs sensoriels intacts.

En 1974, la même équipe présupposant le rôle humoral de neurotransmetteurs, montre que l’analgésie induite par acupuncture peut être transmise d’un lapin à un autre par transfusion du liquide céphalo-rachidien (LCR) [[6]]. Tous ces travaux sont conduits un peu avant la découverte des endorphines.

Lorsque les premières endorphines sont découvertes en 1975, nombreux sont ceux qui font l’hypothèse que ces substances sont les médiateurs responsables des effets de l’analgésie acupuncturale.

En 1976, Pomeranz et coll. [[7]] montrent chez la souris que la naloxone bloque l’effet analgésique de l’acupuncture, ce qui implique le rôle des endorphines. Chez l’homme, Sjolund et coll. [[8]] en 1977 démontrent que l’induction de l’analgésie par EA pendant 30 mn s’accompagne d’une augmentation dans le LCR du niveau de bêta-endorphines issues de la région hypothalamique et confirment que l’administration d’un antagoniste opiacé, la naloxone inhibe totalement l’analgésie. Mayer et coll. rapportent aussi que l’analgésie par acupuncture est réversible 5 mn après l’injection de la naloxone [[9]]. Clement-Jones et coll. en 1980 objectivent chez 10 volontaires présentant des douleurs chroniques une élévation dans le LCR du taux des bêta-endorphines après 30 mn d’EA à basse fréquence (2-3 Hz) alors que le niveau de la met-enképhaline n’est pas augmenté. Cependant, ils supposaient déjà que différents mécanismes étaient impliqués, fonction de la fréquence de stimulation [[10]].

En 1992, Chen et Han montrent que l’analgésie produite par l’EA est régulée par trois types de récepteurs opioïdes [[11],[12]]. Ainsi, l’EA à 2 Hz active les récepteurs μ et δ ; celle à 100 Hz, les récepteurs κ. Mais mieux, l’EA à 15 Hz produit une activation des trois sortes de récepteurs chez le rat [[13]].

Chez le rat anesthésié, la stimulation électrique à basse fréquence (4 Hz) de zusanli (ES36) entraîne une expression de c-fos dans le lobe antérieur de la glande hypophysaire, aussi bien qu’au niveau des noyaux hypothalamiques arqués et autres voisins [[14]]. Les mêmes auteurs ont montré dans une autre étude chez les rats anesthésiés au pentobarbital et subissant une stimulation nociceptive thermale que l’EA (4 Hz sur zusanli) entraînait une augmentation de la localisation de l’expression de c-fos dans le noyau hypothalamique médio-basal et arqué, et dans le noyau paraventriculaire hypothalamique. On retrouvait aussi une élévation de l’hormone adrénocorticotrope (ACTH) et des bêta endorphines plasmatiques. Cela suggère que l’axe hypothalamo hypophyso surrénalien est donc activé lors de l’action de l’électroacupuncture [[15],[16]]. Néanmoins, l’étude de Yang et coll. objective l’implication directe des neurones du noyau supraoptique hypothalamique (SON) dans l’analgésie par EA (36ES 10/20 Hz alternés, 30 mn). L’ocytocine et la vasopressine, sécrétées par le SON, sont connues pour augmenter le seuil à la douleur. Cependant, les auteurs ont montré qu’il fallait distinguer les effets liés au passage des fibres nerveuses reliées aux régions extra-hypothalamiques (substance périaqueducale, noyau raphé magnus, amygdale, locus coerulus etc..), des effets liés aux neurones propres du SON (neurones magnocellulaires sécréteurs de vasopressine et d’ocytocine) et aux dendrites libérant les neuropeptides (modulés aussi par l’ocytocine) [[17]].

Par des travaux d’acupuncture expérimentale sur les animaux, rats, lapins, des auteurs à leur tour démontrent la libération des endorphines par électroacupuncture au niveau du système limbique : amygdale, hippocampe, thalamus, noyau accumbens etc.. ;  du bulbe : substance réticulée (les noyaux raphé magnus, giganto-cellulaire, noyau ambigu) ; hypothalamus ; mésencéphale (substance grise périaqueducale) ; corne postérieure de la moelle épinière (funiculus postéro-latéral) etc.. et leur inhibition par la naloxone ou la naltrexone (inhibiteurs opioïdes) [18-28].

Contrôles inhibiteurs descendants

Autre neuromédiateur, la sérotonine ou 5-hydroxytryptamine joue un rôle important lors d’une stimulation par EA et interviendrait, entre autres, dans l’un des mécanismes de l’analgésie par stimulation du noyau raphé dorsal [29-32].

Takagi et coll. ont déterminé chez le lapin que les récepteurs, localisés au niveau présynaptique et postsynaptique, et libérés dans l’EA (36 ES, 2Hz, 40mn) étaient le 5-HT1 (excepté le 5-HT1A) ;  le 5-HT2 (excepté le 5-HT2A) et le récepteur 5-HT3 [[33]]. L’EA à 2Hz stimule aussi l’expression du récepteur 5-HT3a [[34]].

En 2007, Li et coll. montrent que l’EA (10 Hz à 3mA) appliquée pendant 20mn dans un modèle d’algie par injection d’adjuvant de Freund sur la patte de rat inhibe la transmission de la nociception et de l’hyperalgie en activant les neurones supraspinaux qui se projettent sur la moelle épinière par le système inhibiteur descendant. L’EA active la sérotonine et les catécholamines des neurones du noyau raphé magnus et du locus coeruleus dont l’expression c-fos est significativement augmentée [[35]].

Récemment, il a été démontré que l’analgésie par EA était aussi médiée par les récepteurs α2 adrénergiques de la moelle épinière. Ceci a été observé de manière statistiquement significative sur un modèle d’entorse de cheville chez le rat traité par EA à 100 Hz (largeur d’impulsion carrée de 1 ms) sur TR6 (zhigou) pendant 30 mn versus 4GI (hegou) [[36]].  Plus précisément, Kim et coll. en 2008 observent que la suppression des effets de l’EA à basse fréquence (1 Hz) sur un modèle de douleur inflammatoire carragénine induite sur la patte de rat est médiée par les ganglions sympathiques post-synaptiques. La haute fréquence (120 Hz) intervient quant à elle, par le système médullaire sympatho-surrénalien. Ceci est démontré par le fait que la surrénalectomie diminue l’action de l’EA à 120 Hz sans affecter la basse fréquence et que le traitement pré-thérapeutique avec un antagoniste des récepteurs à la corticostérone n’intervient pas dans l’efficacité de l’EA à 2 ou 120 Hz. D’autre part, l’administration de la 6-hydroxydopamine (neurotoxine des terminaisons nerveuses sympathiques périphériques) bloque sélectivement l’EA (2 Hz). Le propranolol (antagoniste des récepteurs bêta-adrénergiques) abolit complètement à la fois l’EA haute et basse fréquence [[37]].

Récepteur ionotropique NMDA

L’électroacupuncture (36ES, 6RP) à la fréquence de 2 Hz agit aussi dans les algies en diminuant la réponse à l’inflammation locale par l’intermédiaire de la modulation de l’expression des récepteurs ionotropes au glutamate et en particulier le récepteur au  N-méthyl-D-aspartate (NMDA) dans la corne dorsale de la moelle épinière [[38],[39]]. Wang et coll. vont confirmer en 2006 le rôle de la modulation de l’expression des récepteurs de la NMDA par EA (4 Hz/16 Hz alternativement pendant 30 mn : 30VB huantiao et 34VB yanglingquan) sur un modèle de rat hyperalgique [[40]].

Un stimulus nociceptif ou une lésion aiguë d’un nerf engendre une potentialisation à long terme des potentiels évoqués des fibres C de la corne dorsale de la moelle. L’EA à basse fréquence (2 Hz de 1 à 3mA par incrément de 1 mA toutes les 10 mn) appliquée sur ES36 et RA6 induit une dépression à long terme de ces mêmes potentiels évoqués chez le rat ayant une ligature du nerf rachidien de L5-L6. Cet effet est bloqué par l’antagoniste des récepteurs de la N-méthyl-d-acide aspartique (NMDA), le MK-801 et par l’antagoniste des récepteurs opioïdes, la naloxone. En revanche, l’EA à haute fréquence (100 Hz), qui n’est pas efficace dans le traitement des douleurs neuropathiques (encore appelée douleur par désafférentation), induit une potentialisation à long terme des potentiels évoqués des fibres C de la corne dorsale de la moelle chez le rat avec ligature du nerf rachidien. Contrairement à l’EA à 2 Hz, l’EA à 100 Hz est dépendante des systèmes inhibiteurs sérotoninergiques et gabanergiques. L’EA à 2 Hz intervient dans la plasticité synaptique rachidienne par une dépression à long terme de la transmission synaptique au niveau de la corne dorsale de la moelle épinière. Les effets à long terme de l’antinociception s’expliqueraient par l’induction des récepteurs NMDA à dépression à long terme via l’activation du système des peptides opioïdes endogènes [[41]].

En 2008, à nouveau Ryu et coll. objectivent que l’EA (2Hz, 1,0 mA au 36ES et 6RP 30 mn) entraîne chez le rat une modulation de la phosphorylation des récepteurs NMDA (NR1 et NR2B) au niveau de la moelle épinière [[42]]. Le tableau III récapitule les principaux travaux d’électroacupuncture expérimentale et d’imagerie avec les résultats observés.

Tableau III. Récapitulatif des principaux travaux d’électroacupuncture expérimentale et d’imagerie. 

Auteur (année)Caractéristiques de l’électroacupunctureLocalisation cérébrale :  visualisation par expression c-fos  / ac anti-récepteurs stimulés / imagerie fonctionnelleEffets observés 
Gao (1997)[28]4 Hz : 36ES (zusanli)1-2V : 50 mnchez le ratnoyau caudé, noyau septal, aire médiale préoptique, amygdale, substance grise périaqueducale, noyau interpédonculaire, noyau raphé magnusrécepteurs μ augmentés
Pan (1998) [14,15,16]4 Hz : 36ES (zusanli) 30 mn chez le rat Lobe antérieur de la glande hypophysaireHypothalamus (noyau arqué, noyau ventromédial hypothalamique, noyau latéral hypothalamique, noyau paraventriculaire hypothalamique) Libération de :ACTHBêta endorphines
Wu (2002)[43]4 Hz (2 sessions de 1mn de 5 séquences repos-stimulation) 34 VB (yanglinquan) chez 15 volontaires sains Visualisation par IRM fonctionnelleModulation du système  limbique et de l’hypothalamus
Activation de l’hypothalamus, l’aire primaire somatosensorielle, le cortex moteurDésactivation du segment rostral du cortex cingulaire antérieur
Zhang (2003)[45]2 Hz (8 à 15 mA) 6mn36ES (zusanli) et 6RP (sanyinjiaoVisualisation par IRM fonctionnelleModulation par différents réseaux cérébraux
Activation : zones somatosensorielles secondaires bilatérales, insula, cortex cingulaire antérieur controlatéral,  thalamusActivation : aire motrice primaire controlatérale (gyrus précentral), aire motrice supplémentaire et  gyrus temporal supérieur ipsilatéral,
Désactivation : hippocampe bilatéral.
100 Hz (8 à 15 mA)36ES (zusanli) et 6RP (sanyinjiao)chez 48 volontaires sainsActivation : lobule pariétal inférieur controlatéral, le cortex cingulaire antérieur ipsilatéral et le noyau accumbens,
Désactivation :amygdale controlatérale
Choi (2005)[39]2 Hz, 15 Hz et 120 Hz : 36ES, 6RPchez le rat pendant 30j par intervalle de 3 joursCorne dorsale de la moelle épinière : modulation des récepteurs NMDA (type NR1, NR-2A, GlucR-1, GluR-2/3) pour tous les fréquences Diminution des récepteurs ionotropiques NMDA (NR1 et NR-2A)
Napadow (2005)[46]36ES (zusanli)courant continu de 0,7 à 3,6mA ;7 mn13 volontaires sains 2 HzVisualisation par IRM fonctionnelleIntervention du système limbique
Activation :insula antérieurcortex cingulaire antérieur médial Désactivationamygdale, hippocampe antérieur, cortex cingulaire rétrosplénial (BA29 et BA30), le cortex cingulaire subgenual, le cortex ventromédial préfrontal, les lobes frontaux et temporaux.Aire du raphé du pont.
100 Hz
Li (2007)[35]10 Hz (3 mA) 20mn30VBAlgie induite par adjuvant de Freund chez rat Inhibition expression c-fos-couches lame I et II de la corne dorsale de la moelle épinièrestimulation-noyau raphé magnus- locus ceruleusintervention du système inhibiteur descendant : sérotonine et les catécholamines des neurones du noyau raphé magnus et du locus coeruleus

 Imagerie électroacupuncturale analgésique

 L’étude de Wu et coll. de 2002 [[43]] a étudié la réaction cérébrale par IRMf suite à la stimulation électrique du point VB34 (yanglinquan) utilisé en analgésie chez 15 volontaires sains. Ils objectivaient que l’EA vraie à 4 Hz activait de manière statistiquement significative par rapport au groupe placebo (EA « sham » appliquée sur des non-points d’acupuncture) l’hypothalamus, l’aire primaire somatosensorielle ou somatosentivive (S1), le cortex moteur et désactivait le segment rostral du cortex cingulaire antérieur qui est impliqué dans la « réponse émotive » à la douleur. Ils concluaient que les systèmes limbique et hypothalamique étaient modulés par l’électroacupuncture.

Zhang et coll. en 2003 vont démontrer également que l’effet analgésique est modulé à la fois par l’aspect sensoriel et émotionnel du processus douloureux en réponse à la stimulation électrique des points d’acupuncture. Chez huit volontaires sains chez qui on applique un stimulus de chaleur (18°C) et de froid (2°C), l’électroacupuncture engendre une activation de l’aire bilatérale somatosensorielle secondaire (S2), du cortex préfrontal médial, de l’aire de Brodman 32 (BA32) et une désactivation de l’aire S1 controlatérale, de la BA7 et BA24 (gyrus cingulaire antérieur) [[44]].

Les mêmes auteurs [[45]] ont étudié par IRM fonctionnelle les mécanismes possibles à la base de la spécificité de fréquence. Dans les deux cas, il y a des niveaux d’activation positives dans les zones S2 bilatérales, dans l’insula, dans le cortex cingulaire antérieur controlatéral et le thalamus en rapport avec l’effet analgésique. A la fréquence de 2 Hz, des corrélations positives ont été observées dans l’aire motrice primaire controlatérale (gyrus précentral), l’aire motrice supplémentaire et le gyrus temporal supérieur ipsilatéral, tandis que des corrélations négatives ont été retrouvées dans l’hippocampe bilatéral. A la fréquence de 100 Hz, des activations positives ont été observées dans le lobule pariétal inférieur controlatéral, le cortex cingulaire antérieur ipsilatéral et le noyau accumbens, tandis qu’une corrélation négative a été détectée dans l’amygdale controlatérale. Ces résultats montrent que l’analgésie en rapport avec l’électroacupuncture à fréquences basses et hautes nécessite la médiation de différents réseaux cérébraux plus ou moins entremêlés.

Napadow et coll. objectivent que l’EA à 2Hz et à 100 Hz ainsi que l’acupuncture manuelle produisent une activation du signal BOLD de l’IRM fonctionnelle au niveau de l’insula antérieure et une désactivation des structures limbiques et paralimbiques. Augmentation aussi du signal BOLD dans le cortex cingulaire antérieur médial à la fois pour l’EA haute et basse fréquence, toutefois seule l’EA à basse fréquence (2Hz) produit une activation de l’aire du raphé du pont. Tous ces résultats confirment l’hypothèse que le système limbique est un élément central de l’analgésie électroacupuncturale [[46]].

L’étude de l’équipe japonaise de Maenaka s’intéresse à la suppression de la douleur chaleur-induite chez trois singes rhésus et à sa visualisation cérébrale par utilisation de la tomographie par émission de positrons (TEP). La stimulation électroacupuncturale (fréquence de 4 Hz/60 Hz en alternance de 2 secondes est appliquée sur le 36ES et le 4GI pendant 25 mn avant de mettre la queue de l’animal dans l’eau chaude à 47°C. Le temps de latence du retrait est mesuré. L’imagerie par TEP permet de visualiser les aires cérébrales impliquées qui correspondent à celles impliquées dans la douleur, mais inactivées par l’EA : le thalamus (zone postéro-inférieure du chiasma optique très proche de l’hypothalamus), une portion de l’insula et le gyrus cingulaire [[47]]. Le tableau IV récapitule les différentes aires cérébrales impliquées par l’EA.

 Tableau IV. Principales structures du SNC observées par imagerie ou acupuncture expérimentale lors de l’EA analgésique. 

Télencéphale
Aires primaire et secondaire somatosensorielles (S1 et S2)
Cortex préfrontal médial
Gyrus temporal supérieur
Noyau caudé
Diencéphale
Thalamus
Hypothalamus
Mésencéphale
Substance grise périaqueducale
Formation réticulée 
Rhombencéphale (pont et bulbe rachidien)
Formation réticulée
Noyau raphé du pont
Noyau raphé magnus
Locus coeruleus
Système limbique
Gyrus cingulaire
Amygdale
Hippocampe
Insula
Hypothalamus

 Conclusion

Les travaux de physiologie et d’imagerie concernant l’électroacupuncture dans les algies donnent une idée de plus en plus précise de la nature de ses mécanismes neurophysiologiques. Les données récentes suggèrent fortement l’implication de la libération des neuropeptides opioïdes (endorphines, enképhalines, dynorphine etc..), mais aussi l’action inhibitrice des récepteurs ionotropiques glutaminiques (en particulier NMDA), sans oublier la modulation de la douleur par le système inhibiteur descendant sérotoninergique et catécholaminergique. L’EA semble donc moduler le message nociceptif par de multiples mécanismes tout le long de sa transmission. L’imagerie démontre de manière formelle que les systèmes limbique, hypothalamique et le tronc cérébral sont activés par l’EA. Nous verrons dans un prochain article les modalités techniques de l’électroacupuncture et ses implications pratiques. 

Références

[1]. Stéphan JM. Acupuncture expérimentale, stress et molécules informationnelles. Acupuncture & Moxibustion. 2006;5(2):162-170.

[2]. Stéphan JM. Acupuncture, récepteurs transmembranaires à tyrosine-kinases, à cytokines et transduction. Acupuncture & Moxibustion. 2007 Mars;6(1):79-86.

[3]. Zadina JE. Isolation and distribution of endomorphins in the central nervous system. Jpn J Pharmacol. 2002 Jul;89(3):203-8.

[4]. Stéphan JM. Acupuncture, récepteurs couplés aux protéines G et transduction. Acupuncture & Moxibustion. In press 2008.

[5]. Research Group of Acupuncture Anesthesia, P.M.C. The effect of acupuncture on the human skin pain threshold. Chin Med J. 1973;3:151-157.

[6]. Research Group of Acupuncture Anesthesia, P.M.C. The role of some neurotransmitters of brain in finger-acupuncture analgesia. Scientia Sinica. 1974;117:112-130. 

[7]. Pomeranz B, Chiu D. Naloxone blockade of acupuncture analgesia : endorphin implicated.Life Sci.1976;19(11):1757-62.

[8]. Sjolund B, Terenius L, Eriksson M. Increased cerebrospinal fluid levels of endorphins after electro-acupuncture. Acta Physiol Scand. 1977;100(3):382-4.

[9]. Mayer DJ, Price DD, Rafii A. Antagonism of acupuncture analgesia in man by the narcotic antagonist naloxone. Brain Res.1977;121(2):368-72.

[10]. Clement-Jones V, McLoughlin L, Tomlin S, Besser GM, Rees LH, Wen HL. Increased beta-endorphin but not met-enkephalin levels in human cerebrospinal fluid after acupuncture for recurrent pain. Lancet. 1980;2(8201):946-9.

[11]. Chen XH, Han JS. Analgesia induced by electroacupuncture of different frequencies is mediated by different types of opioid receptors: another cross-tolerance study. Behav Brain Res. 1992;47(2):143-9.

[12]. Chen XH, Han JS. All three types of opioid receptors in the spinal cord are important for 2/15 Hz electroacupuncture analgesia. Eur J Pharmacol. 1992;211(2):203-10.

[13]. Han JS. Acupuncture and endorphins. Neurosci Lett. 2004;361(1-3):258-61. 

[14]. Pan B, Castro-Lopes JM, Coimbra A. C-fos expression in the hypothalamo-pituitary system induced by electroacupuncture or noxious stimulation. Neuroreport. 1994;5(13):1649-52.

[15]. Pan B, Castro-Lopes JM, Coimbra A. Activation of anterior lobe corticotrophs by electroacupuncture or noxious stimulation in the anaesthetized rat, as shown by colocalization of Fos protein with ACTH and beta-endorphin and increased hormone release. Brain Res Bull. 1996;40(3):175-82.

[16]. Pan B, Castro-Lopes JM, Coimbra A. Chemical sensory deafferentation abolishes hypothalamic pituitary activation induced by noxious stimulation or electroacupuncture but only decreases that caused by immobilization stress. A c-fos study. Neuroscience. 1997;78(4):1059-68.

[17]. Yang J, Yang Y, Chen JM, Liu WY, Lin BC. Effect of hypothalamic supraoptic nucleus on acupuncture analgesia in the rat. Brain Res Bull. 2008;75(5):681-6.

[18]. Xie GX, Han JS, Hollt V. Electroacupuncture analgesia blocked by microinjection of anti-beta-endorphin antiserum into periaqueductal gray of the rabbit. Int J Neurosci. 1983;18:287-292.

[19]. Chao DM, Shen LL, Tjen-Alooi S, Pitsillides KF, Li P, Longhurst JC. Naloxone reverses inhibitory effect of electroacupuncture on sympathetic cardiovascular reflex responses. Am J Physiol Heart Circ Physiol. 1999;276:H2127-H2134.

[20]. Pomeranz B, Bibic L. Naltrexone, an opiate antagonist, prevents but does not reverse the analgesia produced by electroacupuncture. Brain Res.1988;452:227-231.

[21]. Kiser RS, Khatami MJ, Gatchel RJ, Huang XY, Bhatia K, Altshuler KZ. Acupuncture relief of chronic pain syndrome correlates with increased plasma met-enkephalin concentrations. Lancet 1983;2:1394-1396.

[22]. Han JS. Neurochemical basis of acupuncture. Annu Rev Pharmacol Toxicol.1982;22:193-220. 

[23]. Jin WQ, Zhou ZF, Han JS. Electroacupuncture and morphine analgesia potentiated by bestatin and thiorphan administered to the nucleus accumbens of the rabbit. Brain Res. 1986;380:317-324.

[24].Yu LC, Han JS. Involvement of arcuate nucleus of hypothalamus in the descending pathway from nucleus accumbens to periaqueductal gray subserving an antinociceptive effect. Int J Neurosci. 1989;48:71-78.

[25].Wang Q, Mao L, Han JS. The arcuate nucleus of hypothalamus mediates low but not high frequency electroacupuncture in rats. Brain Res. 1990;513:60-66.

[26]. Takeshige C. The acupuncture point and its connecting central pathway for producing acupuncture analgesia. Brain Res Bull. 1993;30:53-67.

[27]. Chang Ht. Integrative action of thalamus in the process of acupuncture for analgesia. Scientia Sinica. 1973;16:25-60.

[28]. Gao M, Wang M, Li K, He L. Changes of mu opioid receptor binding sites in rat brain following electroacupuncture. Acupunct Electrother Res. 1997;22(3-4):161-6.

[29]. Tsai HY, Lin JG, Inoki R.Further evidence for possible analgesic mechanism of electroacupuncture:effects on neuropeptides and serotonergic neurons in rat spinal cord.Jpn J Pharmacol.1989;49(2):181-5.

[30]. Takeshige C, Sato T, Mera T, Hisamitsu T, Fang J. Descending pain inhibitory system involved in acupuncture analgesia.Brain Res Bull.1992;29(5):617-34.

[31]. Scherder EJ, Bouma A.Possible role of the nucleus raphe dorsalis in analgesia by peripheral stimulation: theoretical considerations.Acupunct Electrother Res. 1993;18(3-4):195-205.

[32]. Chang YH, Hiseh MT, Wu CR.Effects of acupuncture at pai-hui on the deficit of memory storage in rats.Am J Chin Med.1999;27(3-4):289-98. 

[33]. Takagi J, Yonehara N. Serotonin receptor subtypes involved in modulation of electrical acupuncture. Jpn J Pharmacol. 1998;78(4):511-4.

[34]. Lee CK, Bae HS, Rho SW, Choi GS, Ko EJ, Kim SK, Lee YS, Lee HJ, Hong MC, Shin MK, Min BI, Kee HJ Molecular Changes in Remote Tissues induced by Electro-Acupuncture Stimulation at Acupoint ST36. Mol Cells. 2008;25(2).

[35]. Li A, Wang Y, Xin J, Lao L, Ren K, Berman BM, et al. Electroacupuncture suppresses hyperalgesia and spinal Fos expression by activating the descending inhibitory system. Brain Res. 2007;1186:171-9.

[36]. Koo ST, Lim KS, Chung K, Ju H, Chung JM. Electroacupuncture-induced analgesia in a rat model of ankle sprain pain is mediated by spinal alpha-adrenoceptors. Pain. 2008;135(1-2):11-9.

[37]. Kim HW, Uh DK, Yoon SY, Roh DH, Kwon YB, Han HJ, et al. Low-frequency electroacupuncture suppresses carrageenan-induced paw inflammation in mice via sympathetic post-ganglionic neurons, while high-frequency EA suppression is mediated by the sympathoadrenal medullary axis. Brain Res Bull. 2008;75(5):698-705.

[38]. Choi BT, Lee JH, Wan Y, Han JS. Involvement of ionotropic glutamate receptors in low frequency electroacupuncture analgesia in rats. Neurosci Lett. 2005 Apr 4;377(3):185-8.

[39]. Choi BT, Kang J, Jo UB. Effects of electroacupuncture with different frequencies on spinal ionotropic glutamate receptor expression in complete Freund’s adjuvant-injected rat. Acta Histochem. 2005;107(1):67-76. 

[40]. Wang L, Zhang Y, Dai J, Yang J, Gang S. Electroacupuncture (EA) modulates the expression of NMDA receptors in primary sensory neurons in relation to hyperalgesia in rats. Brain Res. 2006;1120(1):46-53.

[41]. Xing GG, Liu FY, Qu XX, Han JS, Wan Y. Long-term synaptic plasticity in the spinal dorsal horn and its modulation by electroacupuncture in rats with neuropathic pain. Exp Neurol. 2007;208(2):323-32.

[42]. Ryu JW, Lee JH, Choi YH, Lee YT, Choi BT. Effects of protein phosphatase inhibitors on the phosphorylation of spinal cord N-methyl-d-aspartate receptors following electroacupuncture stimulation in rats. Brain Res Bull. 2008;75(5):687-91.

[43]. Wu MT, Sheen JM, Chuang KH, Yang P, Chin SL, Tsai CY, Chen CJ, Liao JR, Lai PH, Chu KA, Pan HB, Yang CF. Neuronal specificity of acupuncture response : a fMRI study with electroacupuncture. Neuroimage. 2002;16(4):1028-37.

[44]. Zhang WT, Jin Z, Huang J, Zhang L, Zeng YW, Luo F, Chen AC, Han JS.  Modulation of cold pain in human brain by electric acupoint stimulation : evidence from fMRI. Neuroreport. 2003;14(12):1591-6.

[45]. Zhang WT, Jin Z, Cui GH, Zhang KL, Zhang L, Zeng YW, Luo F, Chen AC, Han JS. Relations between brain network activation and analgesic effect induced by low vs. high frequency electrical acupoint stimulation in different subjects: a functional magnetic resonance imaging study. Brain Res. 2003;982(2):168-78. 

[46]. Napadow V, Makris N, Liu J, Kettner NW, Kwong KK, Hui KK. Effects of electroacupuncture versus manual acupuncture on the human brain as measured by fMRI. Hum Brain Mapp. 2005;24(3):193-205.

[47]. Maenaka T, Tano K, Nakanishi S, Tsukada H, Ishida T. Positron emission tomography analysis of the analgesic effects of acupuncture in rhesus monkeys. Am J Chin Med. 2006;34(5):787-801.

Stéphan JM. Mécanismes neurophysiologiques de l’électroacupuncture dans les algies. Acupuncture & Moxibustion. 2008;7(2):127-137.